

Multiple Objective Evolution Strategies (MOES):

A User’s Guide to Running the Software

by James Lill and Anthony Yau

ARL-CR-0753 November 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5069

ARL-CR-0753 November 2014

Multiple Objective Evolution Strategies (MOES):
A User’s Guide to Running the Software

James Lill

Engility Corporation, High Technology Services Group

Anthony Yau
Formerly with High Performance Technologies, Inc.

under contract

MIPR9BO47BW060

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

November 2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2008–September 2009
4. TITLE AND SUBTITLE

Multiple Objective Evolution Strategies (MOES): A User’s Guide to Running the
Software

5a. CONTRACT NUMBER

MIPR9BO47BW060
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

2986. AUTHOR(S)

James Lill and Anthony Yau
5d. PROJECT NUMBER

GS04T01BFC006120
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Engility Corporation, High Technology Services Group, and
Formerly with High Performance Technologies, Inc.

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-WML-B
Aberdeen Proving Ground, MD 21005-5069

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-0753
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A user’s guide for the parallel Multiple Objective Evolution Strategies (MOES) software package is presented. MOES employs
a sophisticated self-adaptive evolutionary algorithm known as Evolution Strategies. The software can perform single objective
optimization (with and without constraints) as well as multiple objective optimization using a fitness function based on Pareto
dominance. The novel multiple-objective fitness function is computed using the concept of efficiency from Data Envelopment
Analysis (DEA), a specialized application of linear programming. MOES is unique in combining a very flexible self-adaptive
algorithm with a novel multiple-objective algorithm to compute Pareto fitness, all within a package that has been efficiently
parallelized.

15. SUBJECT TERMS

Evolution strategies, optimizations, Pareto dominance, data envelopment analysis, fitness

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

32

19a. NAME OF RESPONSIBLE PERSON
Betsy Rice

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
410-306-1904

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. Example Analysis 1

3. Input.in Keywords 4

4. Output Files Generated by MOES 15

Appendix. Data Envelopment Analysis (DEA) Models 19

List of Symbols, Abbreviations, and Acronyms 25

Distribution List 26

iv

List of Figures

Fig. 1 Plot demonstrating the convergence behavior for 9 independent evolutions of 1
MOES problem ..2

Fig. 2 Plot showing the Pareto-efficient solutions in the elite population of a MOES
calculation ..3

Fig. 3 Plot showing the inefficient solutions in the elite population of a MOES calculation4

List of Tables

Table Sample input file for a MOES calculation containing all input arguments5

1

1. Introduction

The Multiple Objective Evolution Strategies (MOES) software package, developed in the
Multiscale Reactive Modeling of Insensitive Munitions (MSRM-IM) Software Application
Institute, implements algorithms for multiple objective parameter optimizations that join
evolutionary strategies with Data Envelopment Analysis (DEA), a specialized application of
linear programming. The MOES binary executable is compiled with parallelization by default
and requires only one input file: Input.in. This report is a User Guide that discusses running
MOES, although its principle use will be to fit Reax force field (ReaxFF) parameters. Because
MOES drives the optimization but relies on the REAC program, the developer’s original
software, to run ReaxFF, all of the input files that are needed by REAC to fit a force field are
also required. Descriptions of their functions and formats can be found in the REAC User
Manual. Inside a directory with the MOES and REAC input files, the program is invoked with
the standard Message Passing Interface (MPI) launch program. An example launch program is
provided below.

mpirun –np 4 moes.x

MOES has no command-line arguments and can run with only 1 MPI task.

2. Example Analysis

This section of the User Guide emphasizes the most important data streams after a successful
MOES calculation.

The file history.out contains a detailed chronology of what MOES is doing. If the
calculation terminates unexpectedly, the first places to check are in standard error, in standard
output, and in the end of the history file. If the calculation terminates normally (including stalled
evolutions), then the file trajectory.out will probably provide the most useful information
for the user. The columns in trajectory.out describe numerous data that are useful in determining
whether the evolutions have converged. Columns labeled LPSOLVE-## list the number of times
the lp_solve library generated a particular result. In most cases, result 0 (no error) is generated
for each solution in each generation. A few instances under LPSOLVE- 2 are also acceptable
and indicate that an occasional infeasible linear program was generated.

The most sensitive measures of convergence are provided by the standard deviations used in
Evolution Strategies to control mutations of the real variables. These are listed under the labels
deviation-## for each real variable; an average of all standard deviations is given under the

2

label STDave. Typical converged results for 9 independent evolutions of one problem are
shown in Fig. 1.

Convergence of Average Standard Deviation

generation

0 100 200 300 400 500

av
er

ag
e

st
an

da
rd

 d
ev

ia
tio

n

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

generation vs STDave1
generation vs STDave2
generation vs STDave3
generation vs STDave4
generation vs STDave5
generation vs STDave6
generation vs STDave7
generation vs STDave8
generation vs STDave9

Fig. 1 Plot demonstrating the convergence behavior for 9 independent
evolutions of 1 MOES problem

Several of the evolutions in the example do not converge. They are terminated early (e.g.,
Evolutions 4 and 8). However, common evolutionary behavior is to increase initial deviation as
the algorithm examines phase space and then to decrease rapidly as the algorithm concentrates
upon a local minimum. Graphs using data in the trajectory file should be constructed with either
the generation or the number of objective function evaluations (N_compute) as the abscissa.
The column labeled N_Elite lists the size of the elite population at each generation, and the
column infeasible lists the number of solutions that violate constraints when performing
constrained optimization with problem_type = 1 (in the MOES input file). The entries
under Objective-##, variable-##, and deviation-## refer to those values for the

3

best solution; in the case of multiple objective optimizations, these values are somewhat
meaningless as they correspond to one of the solutions on the Pareto frontier. Assuming an
evolution converges, the next file to examine is final.out. The Pareto-efficient solutions can
be identified by those solutions whose efficiency is unity. (Using a scatter plot with the data
organized in x-y pairs is most convenient.) Figure 2 shows a typical Pareto set.

Pareto Efficient Solutions in Elite Population

Objective 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
bj

ec
tiv

e
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X_Pareto vs Y_Pareto

Fig. 2 Plot showing the Pareto-efficient solutions in the elite population of a MOES calculation

The remaining inefficient solutions in the elite population can be graphed in a similar manner for
comparison. A typical plot for all elite-but-inefficient results is shown in Fig. 3.

4

Inefficient Solutions in Elite Population

Objective 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

O
bj

ec
tiv

e
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

X_Elite vs Y_Elite

Fig. 3 Plot showing the inefficient solutions in the elite population of a MOES calculation

The solution variables for the efficient solutions—as well as those for the formally inefficient
solutions whose efficiency is close to unity—are the candidate solutions that should be
considered as possible optimal parameter sets for ReaxFF.

3. Input.in Keywords

A sample input file for multiple objective optimization of ReaxFF parameters is shown in the
Table below. Values for all the input arguments must be specified in the order and format given
below even if a certain input argument is irrelevant to the particular calculation being performed.
The routine that reads the input file expects all the arguments given in the Table below.

5

Table Sample input file for a MOES calculation containing all input arguments

Line Sample Input File
1 ReaxFF parameter optimization
2 problem_type = 0
3 I_Recombine = 0
4 I_Holdout = 0
5 I_Print = 0
6 print_Trajectory = 1
7 ITerminate = 1
8 N_Window = 50
9 Evolve_Stall_Tolerance = 0.001
10 Simplex_Stall_Tolerance = 0.001
11 h_width = 0.01
12 Objective = 1000
13 ranseed = 1
14 population_seed = 0
15 Iclone = 1
16 iRestart = 0
17 N_evolutions = 1
18 N_generations = 1000
19 I_Fit = 0
20 DEA_model = FDH-I
21 skip_LPSOLVE_errors = 1
22 DEA_PRINT = 0
23 N_agglomerate = 100
24 Limit_Elite = 10
25 strategy = mu,kappa,lambda
26 selection = truncation
27 mu = 50
28 kappa = 15
29 lambda = 450
30 rho = 2
31 N_tournament = 2
32 recombination = none
33 x_recombine_mode = sexual
34 x_recombine_operator = discrete
35 s_recombine_mode = panmictic
36 s_recombine_operator = intermediate
37 Use_Angles = 0
38 a_recombine_mode = panmictic
39 a_recombine_operator = intermediate
40 i_recombine_mode = sexual
41 i_recombine_operator = discrete

6

Table Sample input file for a MOES calculation containing all input arguments (continued)

Line Sample Input File
42 p_recombine_mode = sexual
43 p_recombine_operator = intermediate
44 use_Amoeba = 0
45 use_ConGrad = 0
46 use_CnvxGlblUndr = 0
47 MAX_cluster = 5
48 Linear_Ranking = 1
49 Bias = 1.1
50 CGU_iterate = 0
51 nCGU = 244
52 CGU_distribution = Gaussian
53 CGU_anneal = 0
54 xCGU = 0.5

Line 1 is a character string that is printed at the top of the history.out file to describe the
calculation. There is no particular format (other than having an 80-character limit). The
remaining lines must all follow the format as shown above (e.g., in Line 12, Objective =)
and must be entered in the same order. The input arguments are defined below.

problem_type = %d\n—This integer argument defines the optimization problem type. The
possible values are 0 for multiple objective optimization, 1 for constrained single objective
optimization, and 2 for unconstrained single objective optimization.

I_Recombine = %d\n—This integer argument sets the number of evolutions to skip before
computing the DEA fitness. The possible values are 0 to perform a normal evolution, or >0 to
skip the evolution proper and compute the DEA fitness of the combined solutions from
I_Recombine independent evolutions.

I_Holdout = %d\n—This integer argument sets the number of evolutions to skip before
computing the DEA fitness using a new training set containing holdout data, where holdout data
are additional data that supplement the original training set data. The possible values are 0 to
perform a normal evolution or to compute DEA efficiencies of I_Recombine independent
evolutions, or >0 to skip the evolution and recompute the fitness of solutions from the
I_Recombine independent evolutions using a new training set that contains holdout data.

I_Print = %d\n—This integer argument specifies whether the debug information is to be
printed. The possibilities are 0 to suppress debug printing and 1 to print debug information.

7

print_Trajectory = %d\n—This integer argument specifies whether the convergence
information for each evolution is to be printed. The possible choices are 0 to print data
describing the convergence of each evolution and 1 to suppress this printing.

ITerminate = %d\n—This integer argument defines the criteria that are to be used to
terminate the calculation. The possible choices are 0, 1, and 2. Setting 0 results in each separate
evolution terminating only after all the specified generations have been evolved. Setting 1 results
in each separate evolution terminating after it has been determined that the evolution has stalled.
In unconstrained single objective optimizations, an evolution is considered to be stalled when the
current best objective differs from the averaged best objective over the past N_Window
generations by an amount less than Evolve_Stall_Tolerance.

In constrained single objective optimizations, an evolution is considered to be stalled when the
current best fitness differs from the averaged best fitness over the past N_Window generations
by an amount less than Evolve_Stall_Tolerance. In multiple objective optimizations, an
evolution is considered to be stalled when each of the current best objectives averaged over the
solutions on the Pareto frontier differs from the corresponding averaged best objectives over the
past N_Window generations (again averaged over the solutions on the Pareto frontier) by an
amount less than Evolve_Stall_Tolerance. Thus each evolution can evolve for a
different number of generations. Setting 2 results in each separate evolution terminating after it
has been determined that the evolution has stalled; however, in this case, different criteria are
used to determine when the evolution has stalled. In both unconstrained and constrained single
objective optimizations, as well as in multiple objective optimizations, when the average number
of generations the solutions in the elite population have spent in the elite population exceeds
kappa (see kappa discussion below), the evolution is considered to be stalled.

N_Window = %d\n—This integer argument sets the number of most recent generations to use
for moving averages in order to determine when a particular evolution has stalled (see the
discussion of ITerminate above). The typical choices range from 10 to 100.

Evolve_Stall_Tolerance = %lf\n—This real-valued argument specifies the stall
tolerance. When ITerminate = 1, this determines how long each evolution is allowed to
proceed.

Simplex_Stall_Tolerance = %lf\n—This real-valued argument specifies the stall
criterion when using Downhill Simplex optimization, which is currently disabled.

h_width = %lf\n—This real-valued argument specifies the amount by which the equality
constraint can be violated. When performing constrained single objective optimizations, each
equality constraint is transformed into a pair of greater-than h_width and less-than h_width
constraints.

Objective = %d\n—This integer argument, in combination with the problem_type
argument, defines the particular objective function to be used. MOES contains a number of hard-

8

coded objective functions in the routine void F_objective in the source file MOES.cpp.
For ReaxFF objectives, the integer value is 1000.

ranseed = %d\n—This integer argument defines how the random number seed is selected.
Setting 0 results in using the same random number seed each time the program is run, which is
useful for debugging. Setting 1 results in different random number seeds being used each time
the program is run, which is required for production runs.

population_seed = %d\n—This integer argument defines how the initial population is
generated. The possible values are 0, 1, and 2. The default value 0 indicates that the initial
population is determined by generating uniform variates within the finite bounds that must be set
for each variable (i.e., the initial population is randomly generated). Setting 1 fills the initial
population with a single solution defined by the variable_seed array specified in the
objective function. The value 2 is reserved for an option in which variables for seed solutions
must be read off disk. (Option 2 has not yet been implemented.)

Iclone = %d\n— This integer argument specifies whether duplicate solutions are to be
eliminated from the elite population. The possible choices are 0 and 1. Setting 1 eliminates
nearly duplicate solutions (clones) from the elite population. An L2-norm distance is computed
in parameter space between each pair of solutions in the elite population and tested against the
tolerance Dclone, which is hardcoded in each objective function.

iRestart = %d\n—This integer argument sets the number of completed evolutions. When
iRestart is >0, the file esdata.out is used to initialize the elite population and the loop
over evolutions is started at evolution N+1. This feature can be used to gather together
evolutions from multiple machines by collating and renumbering the Evolution and Solution
indices in esdata.out. Currently, calculations cannot be restarted in the middle of an
evolution.

N_evolutions = %d\n —This integer argument sets the total number of evolutions to be
performed. If iRestart is >0, then only the remaining evolutions are performed. The final
analysis of best solutions, written to file final.out, is performed only after all of the
evolutions have been completed.

N_generations = %d\n—This integer argument sets the maximum number of generations
in each evolution. If ITerminate = 0, then each evolution continues for this maximum
number of generations. See the discussion of the input argument ITerminate.

I_Fit = %d\n—This integer argument defines how fitness is computed for the various DEA
models. The possible choices are 0, 1, and 2. This controls how fitness is computed for the
various DEA models when multiple objective optimization is performed. Setting 0 specifies the
fitness of a multiple objective solution using so-called weak DEA efficiency for the radial DEA
models or 1 plus the sum of the slacks for the additive DEA models. MOES adds 1 to the sum of
the slacks for the additive models so that unit fitness implies that the solution lies on DEA

9

frontier for both the radial and the additive models. Setting 1 defines the fitness of a solution
using a nonlinear combination of weak efficiency and slacks; this setting can only be employed
with the radial DEA models. Setting 2 defines the fitness of a solution using one plus the sum
slacks; this setting can only be employed with the additive DEA models. The developers
recommend using one of the radial DEA models (see the discussion for the input argument
DEA_model) and setting I_Fit = 1.

DEA_model = %s\n—This string argument defines the type of DEA model that is to be used.
MOES uses DEA to compute fitness for solutions to multiple objective optimizations. In DEA, a
unique linear program must be solved for each solution in the evolving population. The number
of rows in the linear program is comparable to the number of solutions in the evolving
population; the number of rows is comparable to the number of objectives to be optimized. The
possible choices are CCR-I, CCR-O, BCC-I, BCC-O, FDH-I, FDH-O, ADD-CRS, ADD-VRS,
and ADD-FDH. These abbreviations stand for the input- (-I) and output-oriented (-O) Charnes-
Cooper-Rhodes (CCR-), Banker-Charnes-Cooper (BCC-), and Free Disposal Hull (FDH-) radial
models and the constant returns to scale (ADD-CRS), variable returns to scale (ADD-VRS), and
free disposal hull (ADD-FDH) additive models. All of the radial models (CCR, BCC, and FDH)
are invariant to different scale factors applied to the different objectives; that is, despite any
differences in the scales of the objectives, these models should give the same ordering when
comparing the fitness of the solutions. By contrast, the additive models are not invariant to
changes in scale.

Furthermore, the ADD-FDH model is experimental and has not been verified. The developers
recommend using the radial models. The CCR and BCC models assume that the Pareto frontier
is convex, thus CCR-efficient and BCC-efficient solutions may not find all the Pareto-efficient
solutions for a particular problem. The FDH model makes no such assumption. The FDH-
efficient solutions will always be Pareto efficient; however, the FDH model takes longer to
compute because it involves solving an integer linear program. The choice of whether to use
input- or output-oriented models depends on the type of objectives to be optimized. In the
language of DEA, objectives that are to be maximized are called outputs and those that are to be
minimized are called inputs. For example, minimizing the error between classical ReaxFF
energies and ab initio energies in the training set uses input-oriented models with a phony output
objective that is created within the program.

skip_LPSOLVE_errors = %d\n—This integer argument specifies whether MOES will
terminate when encountering an infeasible linear program. The possible choices are 0 and 1. If
the argument is set to 0, then the multiple objective optimization will terminate upon
encountering an infeasible linear program when computing Pareto fitness and print diagnostic
information. If the argument is set to unity, then a bad fitness value will be assigned to the
solution that generated an infeasible linear program and the evolution will continue. The
developers recommend ignoring LP_SOLVE errors when optimizing ReaxFF parameters.

10

DEA_PRINT = %d\n—This integer argument specifies whether debug information generated
from the linear program is to be printed. The possible choices are 1 to print the debug
information and 0 to suppress this printing. Debug printing generates considerable output and
should only be used for debugging.

N_agglomerate = %d\n—This integer argument sets the maximum number of solutions on
the Pareto frontier as a result of agglomerative clustering. In some problems, it is possible to
generate so many Pareto-efficient solutions that the Pareto frontier becomes crowded. It might
become necessary to perform agglomerative clustering of the Pareto-efficient solutions into
N_agglomerate clusters that will still cover the Pareto frontier as well as the original
solutions.

Limit_Elite = %d\n—This integer argument sets the maximum number of solutions in the
external (non-evolving) elite population during single objective optimizations. The elite
population is the collection of the best solutions obtained during the course of an evolution.

strategy = %s\n—This string argument defines the type of Evolution Strategy to employ.
The possible choices are mu,kappa,lambda,rho, mu,kappa,lambda, mu+lambda, and
mu,lambda using the standard notation of Bäck for Evolution Strategies. mu,lambda is
perhaps the most commonly employed Evolution Strategy. In this case, the mu parents die off at
the end of each generation, the lambda >= mu offspring are then ordered by fitness, and the
best mu solutions retained as parents for the next generation. This strategy is called non-elite
because, even if one of the parents happens to be a particularly good solution, it is killed off
immediately after it reproduces and the evolving population loses its genome. The opposite case,
in which a parent can in principle live forever, is provided by the mu+lambda strategy. Here, in
each generation, the entire evolving population of mu and lambda solutions is ordered by
fitness, and the best mu solutions are retained as parents for the next generation.

The consensus opinion is that mu+lambda strategies are considerably more prone to premature
convergence than are mu,lambda strategies. Intermediate between these 2 extremes is the
mu,kappa,lambda strategy, in which each solution is allowed to live for no more than
kappa generations. The flexibility of this strategy allowed for some of the most efficient
solutions to the test problems in the Input_Files directory. The developers recommend using
mu,kappa,lambda. The mu,kappa,lambda,rho strategy is only used in conjunction
with recombination = diagonal_crossover. In this case, rho gives the number of
parents that are recombined using diagonal crossover. See the discussion below for
recombination.

selection = %s\n—This string argument defines the type of selection to employ. The
possible choices are truncation and tournament. Truncation is the standard method of
selection in Evolution Strategies. The solutions in the evolving population are ordered according
to fitness, and the best mu solutions are retained as parents for the next generation. If users
suspect that evolutions are ending prematurely, then tournament selection might be beneficial

11

because it has a much lower selective pressure. In this case N_tournament solutions are
chosen at random from the evolving population; the solution with the highest fitness is removed
from the evolving population and is chosen as a parent for the next generation. Another
tournament is then held.

mu = %d\n—This integer argument sets the number of parents in the evolving population
using the standard notation of Bäck for Evolution Strategies. MOES initializes each evolution
with mu parents according to the population_seed argument. A general rule of thumb is
that the number of parents should be roughly 2 times the number of evolving parameters.

kappa = %d\n—This integer argument sets the maximum lifetime (in generations) of
solutions in the evolving population.

lambda = %d\n—This integer argument sets the number of offspring in the evolving
population. The time to compute each generation depends entirely on this input argument since it
sets the number of times the objective function must be called in the loop over generations. A
general rule of thumb is that the number of offspring should be roughly 8 times the number of
evolving parameters.

rho = %d\n—This integer argument sets the number of parents used with diagonal crossover.
rho - 1 crossover points are chosen at random in the genome (parameter space) and the
parameters of the offspring are chosen from those of rho parents chosen at random. In some
cases, this crossover is thought to preserve more good genes than the more commonly used
uniform crossover described below.

N_tournament = %d\n—This integer argument sets the number of solutions used in each
tournament selection. The selected solutions are not returned to the evolving population.

recombination = %s\n—This string argument defines the type of recombination method
to employ, if any. The possible choices are uniform_crossover, the standard recombination
method when performing Evolution Strategies; diagonal_crossover, a less-commonly
used recombination method in Evolution Strategies that is described above; and none, i.e.,
perform mutation-only Evolution Strategies without a recombination method. In the standard
uniform crossover, each parameter of each offspring is chosen from one or more parents
according to the various modes and operators given below. There are currently 2 schools of
thought in the evolutionary algorithm community regarding recombination: one school says
recombination only screws things up and should not be used in general; the other school says
recombination is generally effective if its application is sufficiently flexible. The developers
remain agnostic in this debate. MOES does allow users to experiment with multiple
recombination options, in which case the developers recommend using
uniform_crossover.

x_recombine_mode = %s\n—This string argument defines the mode of uniform crossover
on the floating-point parameters being varied. The choices are sexual and panmictic. In the

12

sexual mode, only 2 parents chosen at random from the mu parents can contribute genetic
material to the offspring; many parents can contribute in the panmictic mode. One parent is
chosen at random from the mu parents and then a different partner is chosen at random from the
mu - 1 remaining parents for each parameter to be recombined. Thus, genetic material from 2
parents is transferred to each parameter, but one of the parents is different each time.

x_recombine_operator = %s\n—This string argument defines the uniform crossover
operator on the floating-point parameters being varied. The possible choices are discrete,
intermediate, and general. If the operator is discrete, then the parameter of the
offspring is chosen to be one of the parameters of the 2 parents involved in recombination for
that particular real parameter. If the operator is intermediate, then the parameter of the
offspring is chosen to be the average of the parameters of the 2 parents involved in
recombination for that particular real parameter. If the operator is general, then the parameter
of the offspring is chosen to be a stochastic linear combination of the parameters of the 2 parents
involved in recombination for that particular real parameter.

The following recombination modes and operators follow a similar pattern.

s_recombine_mode = %s\n—This string argument defines the uniform crossover mode
that is to be performed on the standard deviations, i.e., the strategy parameters that control the
mutation of the real parameters. The possible choices are sexual and panmictic.

s_recombine_operator = %s\n—This string argument defines the uniform crossover
operator for the standard deviations. The possible choices are discrete, intermediate,
and general.

Use_Angles = %d\n—This integer argument specifies whether correlated mutations are to
be performed. The possible choices are 0 and 1. Setting 1 enables covariant angles when
performing correlated mutations, which require copious amounts of memory but can potentially
converge evolutions much more rapidly.

a_recombine_mode = %s\n—This string argument defines the uniform crossover mode
for the covariant angles that control the correlated mutation of the parameters to be varied. The
possible choices are sexual and panmictic.

a_recombine_operator = %s\n—This string argument defines the uniform crossover
operator for the covariant angles. The possible choices are discrete, intermediate, and
general.

i_recombine_mode = %s\n—This string argument defines the uniform crossover mode
for the varying integer parameters. The possible choices are sexual and panmictic.

i_recombine_operator = %s\n—This string argument defines the uniform crossover
operator for the varying integer parameters. The possible choices are discrete,

13

intermediate, and general. A nearest-integer function is employed to ensure that the
result of intermediate or general recombination is an integer.

p_recombine_mode = %s\n—This string argument defines the uniform crossover mode
for the mutation probabilities, which are the strategy parameters that control the mutation of the
varying integer parameters. The possible choices are sexual and panmictic.

p_recombine_operator = %s\n—This string argument defines the uniform crossover
operator for the mutation probabilities. The possible choices are discrete, intermediate,
and general.

use_Amoeba = %d\n—This integer argument defines how the downhill simplex (DHS)
algorithm is to be employed and how it is only valid for single objective optimization. (Amoeba
is the name of the DHS implementation in Numerical Recipes. Because Numerical Recipes
software cannot be distributed, this option has been disabled, but the keyword must still be
present.) The possible choices are 0, 1, 2, and 3. If 0, DHS is not used. If 1, DHS is applied to the
elite population at the end of each evolution. The effect is that the elite population will be
clustered around a dense set of local minima; using them as an initial simplex may find a better
solution. If 2, DHS is applied to the elite population at the end of each evolution as well as to the
clustered results of all of the quenched elite populations from all the evolutions. In other words,
the best results from applying DHS to the elite population after each evolution are clustered and
the DHS is applied a final time to try to find a better solution. The effect is that each evolution
has found a local optimum among some presumed dense set of local minima and that a final
application of the DHS might find one better.

Options 1 and 2 represent hybrid algorithms in which the DHS refines the optima obtained by
Evolution Strategies. This hybrid algorithm may in fact reduce the number of function
evaluations if the switch is made at the correct time. If use_Amoeba = 3, then evolutionary
optimization is skipped entirely and the DHS is applied directly to the best initialized population
of solutions. This option can be used as a sanity test for complicated multimodal problems.
Whenever the optimum cannot be reached by a local search, the evolutionary results should be
far superior. The size of the simplex used in the algorithm is dictated by the dimensionality of the
parameter space.

use_ConGrad = %d\n—This integer argument defines how the conjugate gradient
algorithm is to be employed; it is only valid for single objective optimization. (Conjugate
gradients have also been disabled due to Numerical Recipes’ licensing restrictions.) The
possible choices are 0, 1, and 2. If 0, the conjugate gradient algorithm is not employed. If 1, then
the conjugate gradient algorithm is used to quench the final parent population at the end of each
evolution. The elite population then consists of the best quenched solutions obtained from all the
evolutions performed to date. This is a hybrid algorithm that can save function evaluations if the
switch between Evolution Strategies and the conjugate gradient algorithm is made at the right
time. If 2, then Evolution Strategies is skipped entirely and the conjugate gradient algorithm is

14

applied directly to the initialized population of solutions. Again, this option can be used as a
sanity test for complicated multimodal problems. Whenever the optimum cannot be reached by a
local search, the evolutionary results should be far superior.

use_CnvxGlblUndr = %d\n—This integer argument defines how the Convex Global
Underestimator algorithm (CGU) is to be employed. The possible choices are 0, 1, and 2. If 0,
CGU will not be used. If 1, CGU is used on the final parent population. If 2, Evolution Strategies
are skipped entirely and CGU is applied to the initialized population. CGU is a single objective
algorithm originally developed for studying protein folding. It assumes that the energy surface
looks like the proverbial bumpy funnel. Given a set of points in parameter space, the algorithm
quenches the objective at each point and then constructs a quadratic function that underestimates
the energy at each point. The coefficients of the quadratic polynomial are obtained using linear
programming. The CGU was implemented with the LP_SOLVE library and verified against an
older version of the program. The code has been upgraded with calls to the latest LP_SOLVE
library, but it has not yet been incorporated into the latest version of MOES. This option has not
yet been implemented. Several of the parameters relating to CGU at the end of the current input
file may be deleted after CGU has been implemented.

MAX_cluster = %d\n—This integer argument sets the maximum number of clusters that
the code attempts to form from the best quenched solutions from each evolution before final
application of the DHS algorithm. It is used in conjunction with use_Amoeba = 2 and must
be less than N_evolutions.

Linear_Ranking = %d\n—This integer argument specifies whether linear ranking is to be
used in choosing parents for recombination. Normally, parents are chosen at random using
uniform variants, i.e., parents are chosen in a non-biased fashion and parents with high fitness
are just as likely to reproduce as parents with low fitness. In linear ranking, the parents are
ordered by fitness; a linear bias is applied when choosing parents to recombine. The possible
choices are 0, not to use linear ranking; and 1, to use linear ranking.

Bias = %lf\n—This real-valued argument specifies the value of the bias used in linear
ranking; it must be > 0.0 and < 2.0.

CGU_iterate = %d\n—This integer argument has not been implemented.

nCGU = %d\n—This integer argument has not been implemented.

CGU_distribution = %s\n—This string argument has not been implemented.

CGU_anneal = %d\n—This integer argument has not been implemented.

xCGU = %lf\n—This real-valued argument has not been implemented.

15

4. Output Files Generated by MOES

history.out

The history.out file is the principal output file that contains a history of the calculation. In
parallel calculations, there are similar files, history_1.out, history_2.out, etc., created
by each processing element. Much of the history of a calculation is documented with output such
as the following:
begin generation 97, evolution 66, N_compute = 8175
 Population[100].efficiency = +1.000000e+00,
Population[100].max_slack = +0.000000e+00
 Population[100].fitness = +1.000000e+00, Population[100].gvalue =
+1.094935e+00
 Population[100].objective[1] = +6.117722e-01,
Population[100].slack[1] = +0.000000e+00
 Population[100].objective[2] = +2.764909e-01,
Population[100].slack[2] = +0.000000e+00
 Population[100].objective[3] = +1.000000e+00,
Population[100].slack[3] = +0.000000e+00

 ... computing DEA efficiency of parents and children in evolving population,
case 2, Ndmu = 100
 ... using CCR-I model, ipath = 1

 arrays dimensioned for DEAsolve

 input & output variables assigned for DEAsolve

 ... call DEAsolve: ipath = 1, Ndmu = 100, Nx = 2, Ny = 1, dea_print = 0

 DEAsolve returned Ierror = 0, Kerror = 0, Perror = 0

 analyzing best current solutions using DEA, N_Elite = 12

 ... computing DEA efficiency of elite population, case 3, Ndmu = 12
 ... using CCR-I model, ipath = 1

 arrays dimensioned for DEAsolve

 input & output variables assigned for DEAsolve

 ... call DEAsolve: ipath = 1, Ndmu = 12, Nx = 2, Ny = 1, dea_print = 0

 DEAsolve returned Ierror = 0, Kerror = 0, Perror = 0
 new total Pareto efficient solutions, N_Elite = 9

16

Some statistics are printed after each evolution:
mean and standard deviation of 1020 elite solutions:
 mean = +9.136540e-01, standard deviation = +5.695545e-02, median =
+9.105912e-01
 best elite fitness = +1.000000e+00, worst elite fitness = +7.435670e-01

 average number of generations evolved = 149

 average simplex iterations per generation = 1415

 Exiting Server

If the calculation ends unexpectedly, check history.out for error messages and diagnostic
information. Each MPI task records the solutions with the lowest L1-norm (Manhattan distance)
and L2-norm (Euclidean distance) in objective space. As the evolution proceeds, the moment a
solution with a new smallest error is discovered, it prints the parameter values and the norm to its
history_###.out file. This feature is only meant for walking away from a crashed evolution
with at least one force field; it should not be used to attempt to initialize an elite population
because the solutions have not been filtered with an envelopment analysis or a clone detection
algorithm.

trajectory.out
The trajectory.out file is used to study the convergence of the evolutionary optimization.
The results of the best solution obtained in each generation are printed, including fitness,
objective(s), variables, and standard deviations. Convergence can be ascertained by graphing
various results versus graphing either the generation or the total number of objective function
evaluations. Some of the diagnostics available include the number of elite solutions in each
generation (N_Elite), the average age of the parents (mu_Age), and the average standard
deviation of the parents (STDave). The latter quantity should approach zero as the algorithm
converges. Typically, the quantity will increase slightly as the algorithm adjusts its strategy
parameters to explore more parameter space; then it should drop rapidly as the algorithm
concentrates on a local optimum.

pareto.out
The pareto.out file contains the DEA-efficient solutions in each generation as well as
diagnostics for terminating the evolution. See the discussion of the input variables
ITerminate and N_Window above. If an analytic Pareto frontier is known, it will be printed
at the top of the file. In multiple objective optimizations, any one of the DEA-efficient solutions
that appear in pareto.out can be printed in trajectory.out.

final.out
The final.out file shows all of the solutions obtained by combining the results of the final
elite populations from each independent evolution. The solutions are ordered by their DEA-

17

efficiencies, which are obtained by performing the appropriate envelopment analysis of the
combined results. In addition to efficiencies and objectives, all of the variables and standard
deviations are also printed as well as is additional information, such as the projection of the
solutions onto the Pareto frontier. This file will be empty unless the calculation proceeds to the
final analysis of all evolutions.

amoeba.out
The amoeba.out file contains information about the calculations performed by the DHS
algorithm whenever amoeba is invoked. See the discussion of input variables use_Amoeba
and Simplex_Stall_Tolerance above.

lpsolve.out
The lpsolve.out file contains detailed information of the linear programs solved by the
LPSOLVE package. It is controlled by the input variable DEA_PRINT and should only be
invoked when debugging. Much of the output is generated by prints within LPSOLVE itself.
Note that MOES solves many linear programs in each generation so a great deal of output can be
generated with this option. The files lpsolve_1.out, lpsolve_2.out, etc., are created by
each process if there are enough LP files to be distributed across all MPI tasks.

esdata.out
The esdata.out file is used to restart calculations (see the discussion of the input variable
iRestart). The best solutions obtained after each evolution are combined into an array of
structures called Combine[]. These structures are appended onto and read from esdata.out.
Thus, when a calculation is restarted, it reads in Combine[] and begins at the next evolution.

best.out, parents.out, offspring.out
The best.out, parents.out, and offspring.out files contain detailed information of
the best, parent, and offspring solutions obtained after each generation. They are controlled by
the input variable I_Print and should only be used when debugging.

test.out
The test.out file is a catch-all output stream for debugging. It is written to when I_Print
= 1. Currently, it records when solutions are written to or read from esdata.out.

RNG_test.out
The RNG_test.out file is a catch-all output stream for initializing the pseudo-random number
generator.

18

INTENTIONALLY LEFT BLANK.

19

Appendix. Data Envelopment Analysis (DEA) Models

20

We summarize a series of DEA models for the thp solution, i.e., the linear programs necessary to
solve for the DEA efficiency of the thp parameter set, pθ , where 1 p N≤ ≤ and where N is the

number of solutions. For simplicity, we only summarize the input-oriented problems because
these are set up to minimize objectives and these are what we have used while minimizing errors
in the training set for Reax force field (ReaxFF) parameters. In our problems, the various errors
we wish to minimize are treated as input variables in the context of DEA.

0
1

1

Input-Oriented Objective (DEA ratio):

minimize inputs, maximize outputs min

 Input Variables:

 Output Variables:

 Dual (multiplier) Solution Input Weights:

I

pi pi
i

p J

pj pj
j

p

pi

pj

u X u

v Y

I X
J Y
I u

θ

θ

=

=

−
=

 ⇒  

∑

∑

 Dual (multiplier) Solution Output Weights:
pi

pjJ v

Because DEA demands that there be both input and output variables, we define a single constant
output variable 1 1pY = for each solution (parameter set) p . The inputs piX then contain the

various errors from the ReaxFF training set that Multiple Objective Evolution Strategies (MOES)
tries to minimize. However, we have written out the DEA problems in the general case where
there are multiple inputs and outputs. Formally, the DEA efficiency is defined in terms of the
solutions to the dual linear program in multiplier form but, for numerical reasons, we solve the
primal linear programs in envelopment form as indicated below. Pivoting in the tableaux is much
more stable when there are more columns than rows, as is the case with the envelopment models.
We can always recover the dual multipliers (weights) after obtaining the envelopment solution.

21

CCR-I

The input-oriented Charnes-Cooper-Rhodes (CCR) Model (Phase 1, weak efficiency) assumes

the Pareto frontier to be convex.



1

1

Input-Oriented CCR Phase 1

objective: min

constraints: 0

constraints: 0

variable: 0

variables: 0

solution: min

1 # inputs 1 # outputs 1 ,

p

N

p pi pn ni
n

N

pj pn nj
n

p

pn

p p

X X

Y Y

i I j J n p N

θ

θ λ

λ

θ

λ

θ θ

=

=

  

≤ −

≥ −

≤

≤

 =  
≤ ≤ = ≤ ≤ = ≤ ≤

∑

∑

  # solutions
tableau dimension: 1 columns, rowsN I J

=
+ +

Phase 2 (max slack) then uses the solution of Phase 1 as a parameter:





1 1

1

1

Input-Oriented CCR Phase 2

objective: max

constraints:

constraints:

parameter: min

variables: 0

slacks: 0, 0

soluti

I J

pi pj
i j

N

p pi pn ni pi
n

N

pj pn nj pj
n

p p

pn

pi pj

s s

X X s

Y Y s

s s

θ λ

λ

θ θ

λ

− +

= =

−

=

+

=

− +

 
+ 

 

− =

− = −

 =  
≤

≥ ≥

∑ ∑

∑

∑

1 1
on:

1 # inputs 1 # outputs 1 , # solutions
tableau dimension: columns, rows

I J

p pi pj
i j

s s s

i I j J n p N
N I J

− +

= =

= +

≤ ≤ = ≤ ≤ = ≤ ≤ =
+

∑ ∑

 

22

BCC-I

The input-oriented Banker-Charnes-Cooper (BCC) Model, (Phase 1, weak efficiency) adds a

single convexity constraint to CCR. The Pareto frontier is assumed to be convex.



1

1

1

Input-Oriented BCC Phase 1

objective: min

constraints: 0

constraints: 0

constraint: 1

variable: 0

variables: 0

solution: min

1 # inputs 1

p

N

p pi pn ni
n

N

pj pn nj
n

N

pn
n

p

pn

p p

X X

Y Y

i I

θ

θ λ

λ

λ

θ

λ

θ θ

=

=

=

  

≤ −

≥ −

=

≤

≤

 =  
≤ ≤ = ≤

∑

∑

∑

 # outputs 1 , # solutions
tableau dimension: 1 columns, 1 rows

j J n p N
N I J

≤ = ≤ ≤ =
+ + +



Phase 2 (max slack) uses the solution to Phase 1 as a parameter:





1 1

1

1

1

Input-Oriented BCC Phase 2

objective: max

constraints:

constraints:

constraint: 1

parameter: min

variables: 0

slack

I J

pi pj
i j

N

p pi pn ni pi
n

N

pj pn nj pj
n

N

pn
n

p p

pn

s s

X X s

Y Y s

θ λ

λ

λ

θ θ

λ

− +

= =

−

=

+

=

=

 
+ 

 

− =

− = −

=

 =  
≤

∑ ∑

∑

∑

∑

1 1

s: 0, 0

solution:

1 # inputs 1 # outputs 1 , # solutions
tableau dimension: columns, 1 rows

pi pj

I J

p pi pj
i j

s s

s s s

i I j J n p N
N I J

− +

− +

= =

≥ ≥

= +

≤ ≤ = ≤ ≤ = ≤ ≤ =
+ +

∑ ∑

 

23

FDH-I

The input-oriented Free Disposal Hull (FDH) Model can be obtained from the input-oriented

BCC phase 1 model by demanding that the variables be integers. In effect ()0 pnλ≤ is replaced

by ()integerpnλ = . No assumption of convexity of the Pareto frontier is made.



1

1

1

Input-Oriented FDH

objective: min

constraints: 0

constraints: 0

constraint: 1

variable: 0

variables: integer

solution: min

1 # inputs 1

p

N

p pi pn ni
n

N

pj pn nj
n

N

pn
n

p

pn

p p

X X

Y Y

i I j

θ

θ λ

λ

λ

θ

λ

θ θ

=

=

=

  

≤ −

≥ −

=

≤

=

 =  
≤ ≤ = ≤

∑

∑

∑

 # outputs 1 , # solutions
tableau dimension: 1 columns, 1 rows

J n p N
N I J

≤ = ≤ ≤ =
+ + +



24

INTENTIONALLY LEFT BLANK.

25

List of Symbols, Abbreviations, and Acronyms

BCC Banker-Charnes-Cooper

CCR Charnes-Cooper-Rhodes

CGU Convex Global Underestimator

DEA Data Envelopment Analysis

DHS downhill simplex

FDH Free Disposal Hull

MOES Multiple Objective Evolution Strategies

MPI Message Passing Interface

MSRM-IM Multiscale Reactive Modeling of Insensitive Munitions

ReaxFF Reax force field

 26

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL WML B
 J LILL
 A YAU

	List of Figures
	List of Tables
	1. Introduction
	2. Example Analysis
	3. Input.in Keywords
	4. Output Files Generated by MOES
	Appendix. Data Envelopment Analysis (DEA) Models
	List of Symbols, Abbreviations, and Acronyms

